物联网维护
当前位置 当前位置:首页 > > 物联网维护
物联网维护 物联网维护

物联网维护

预测性维护需要具有处理大量数据和运行复杂算法的能力,这在SCADA中是无法实现的。另一方面,基于物联网的解决方案允许在多台计算机上并行存储TB级数据并运行机器学习算法,以预测潜在危险,并确定工业设备何时可能出现故障。

基于物联网的预测性维护解决方案,必须考虑周全的架构

让我们看看哪些组件可以支持预测性维护工作,以及它们是如何相互协作的。以一个可以预测工业电池使用寿命的示例为例。

基于物联网的预测性维护体系架构

在进入技术细节之前,重要的是要确定决定电池寿命的关键变量。它们是温度、电压和放电。确定出变量后,电池将配备传感器,以收集这些参数的数据并将其发送云中进行处理。

传感器数据不能直接发送到云端,而是通过网关。现场网关是过滤和预处理数据的物理设备。云网关确保安全的数据传输,并通过各种协议提供连接,这允许连接各种现场网关。

一旦传感器数据进入云,它就“着陆”在流数据处理器上。其目的是允许数据的连续流动,并快速有效地将数据流传输到数据存储器(数据湖)。

数据湖存储传感器收集的数据。它仍然是原始的,所以它可能不准确、错误或包含不相关的内容。它表示为在相应时间测量的多组传感器读数。当需要数据来洞察电池的健康状况时,会将其加载到一个大数据仓库中。

大数据仓库存储清理后的结构化数据。它包含在特定时间测量的温度、电压和放电参数,以及关于电池类型、位置、充电日期等上下文信息。

一旦准备好数据,就用机器学习(ML)算法进行分析。机器学习算法用于揭示数据集中隐藏的相关性和检测异常数据模式。

合作案例

Case